FMI ENERGY CONFERENCE

Orlando

September 2008

FUEL CELL ORIGINS

- Sir William Grove invented the fuel cell in 1839
- Demonstrated that reaction was reversible
- "Fuel cell" term introduced by Ludwig Mond and Charles Langer in 1889
 - Attempted to develop coal-gas/air fuel cells

HOW A FUEL CELL WORKS

- 1. Hydrogen flows into the fuel cell anode, where it is separated into protons (hydrogen ions) and electrons
- 2. Protons pass through the electrolyte to the cathode
- 3. Electrons flow through an external circuit in the form of electric current
- 4. Oxygen flows into the fuel cell cathode, where it helps protons and electrons combine to produce pure water and heat

FUEL CELL TECHNOLOGIES

		Operating	
Fuel Cell Type	Applications	Temperature °F	Comments
Alkaline	Space	176 - 212	Needs pure Hydrogen & Oxygen
Phosphoric Acid	Stationary	392 - 428	Long life High Efficiency Good co-generation
Proton Exchange Membrane	Stationary Transportation	176 - 212	Short start time Easily manufactured Size / scalability
Molten Carbonate	Stationary	1,100 – 1,200	Short Life High efficiency Good co-generation
Solid Oxide	Stationary	1,200 – 1,800	High efficiency Exotic materials

ALKALINE FUEL CELLS

12 kW Shuttle fuel cell

- Electrolyte: Potassium Hydroxide (KOH)
- Strengths
 - Fast reaction kinetics
 - Good power density
 - Low temperature operation
- Weaknesses
 - Not tolerant to CO₂
 - Forms carbonates in electrolyte that precipitate
- Primary Application(s):
 - Transportation applications with pure H₂ and O₂

1.2 kW Apollo Fuel Cell

PHOSPHORIC ACID FUEL CELLS - 1

- Electrolyte: Liquid Phosphoric Acid
- Strengths
 - Long-life
 - High cogeneration efficiency
 - Performs well with reformate fuel containing CO
- Weaknesses
 - Power Density / Footprint
- Primary Application(s):
 - Commercial Building cogeneration systems
 - Wastewater Treatment Plants using Anaeobic Digester Gas

PHOSPHORIC ACID FUEL CELLS - 2

- Electrolyte: Liquid Phosphoric Acid
- Strengths
 - Long-life
 - High cogeneration efficiency
 - Performs well with reformate fuel containing CO
- Weaknesses
 - Power Density / Footprint
- Primary Application(s):
 - Commercial Building cogeneration systems

PROTON EXCHANGE MEMBRANE FUEL CELLS

- Electrolyte: thin solid polymer membrane
- Strengths
 - Excellent reaction kinetics
 - Good power density
 - Fast startups (seconds)
- Weaknesses
 - Poor CO tolerance
 - Needs relatively pure fuel
 - Durability
- Primary Application(s):
 - Car, Bus, Tow/Work vehicle applications with H_2 and air
 - Stationary applications (as battery-replacement)

MOLTEN CARBONATE FUEL CELLS

Wastewater Treatment Plant

Palmdale, CA

- Electrolyte: Molten salt in porous ceramic (LiAlO2)
- Strengths:
 - High Electrical Efficiency
 - Cogeneration
 - Simple system
- Weaknesses
 - Durability
 - Low power density
 - Slow start
- Primary Application(s):
 - Commercial Building cogeneration systems
 - Wastewater Treatment Plants using Anaerobic Digester Gas (ADG)

SOLID OXIDE FUEL CELLS

- Electrolyte: porous, solid ceramic compound
- Strengths
 - Excellent power density
 - Very simple system
 - Opportunity for hybrid power systems with turbines
- Weaknesses
 - Durability
 - Scaleable to large size uncertain
- Primary Application(s):
 - Stationary applications with natural gas and air
 - Still in demonstration stage

FUEL CELL SYSTEM

Note: Fuel cell system with separate catalytic steam reformer example shown

FUEL CELL SYSTEM

Note: Phosphoric Acid Fuel Cell example shown

FUEL CELL ADVANTAGE

Traditional Central Power Plant

Source: Adapted from U.S. Combined Heat and Power Association.

Fuel Cell Cogeneration Solution

Source: Adapted from U.S. Combined Heat and Power Association.

Fuel Cell Opportunities Drivers

- Clean Energy Benefits
 - Clean Energy Credits
 - Renewable Energy Credits
 - Carbon Trading
 - Water Credit
 - NOx's Reduction Trading
 - SOx's Reduction Trading
 - Insurance Reduction
 - Corporate Mission Compliance
 - Sustainable Futures
 - LEED Points

- Incentives
 - Federal Tax Rebates
 - Up to \$1000/Kw
 - Demand Response Capabilities
 - State & Local Rebates
 - Up to \$4700/KW
 - Low Fluctuation / Fixed or Stable Utility Cost
 - Multiple Year Gas Contracts
 - Thermal Utilization
 - Reliable Back Up Power
 - Vital Loads or Perishable Loads 24/7
 - Emerging Credit Trading Market
 - Installed base future revenue day one

- System & Integration Advancements
 - Reduced First Cost With Large Reduction In Energy Usage
 - Refrigeration rack condensing
 - No air cooled condensers
 - No copper to the roof
 - Drastic refrigerant charge reduction
 - Stable condensing at reduced operating cost & maintenance cost
 - Air cooled chiller back up for redundancy
 - HVAC
 - Less Refrigerant charge
 - Less copper & compressors

Energy Productivity, Security, Responsibility

System & Integration Advancements

- Fuel Cell Electrical Advantages
 - Stable utility cost (Long term Gas contracts)
 - 24/7 base load with back up
 - Clean sign wave for vital loads
 - Power factor correction capability real time
 - Construction Power* Heating*
- Reduced Ownership Cost
 - Capital Lease (\$0 out of pocket with capital expenditure tax breaks)
 - Equipment Lease (\$0 out of pocket with operational tax breaks)
 - Lease buy out options for tax and incentive advantages

- Emergency Systems Back Up Power
 - Elevators
 - Escalators
 - Refrigeration Systems
 - Evacuation
 - P.O.S.
 - Lights
 - Vacuum System

Energy Responsibility

Energy Productivity, Security, Responsibility

Water Conservation - simplifies

•No water permits

- •No drainage issues
- Minimizes installation complexity

Supermarket Installation Thermal Utilization Energy Productivity, Security, Responsibility

Proposed Pad Layout

Energy Productivity, Security, Responsibility

OPEN CHAIN LINK FENCE

Electrical Operating Modes

Energy Productivity, Security, Responsibility

Grid-Connected

Grid-Connected / Grid-Independent

DEHUMIDIFICATION

- Custom design using water coils to heat the reactivation air and provide space heating
- Desiccant based dehumidification
 - Make-up air handling units only
- Benefits
 - Energy savings due to fuel cell heat usage especially in summer

DEHUMIDIFICATION

- Fuel cell with absorption chiller
- Custom design using chill water coils and hot water coils to condition air and dehumidify
- CCHP RTU
 - Reheat based dehumidification
 - Make-up air handling units or Standard
- Benefits
 - Energy savings / Small Store Applications / Retrofit able / Scaleable

DEHUMIDIFICATION

- Fuel cell with no absorption chiller
- Standard design using DX coils and hot water coils to condition air and dehumidify
- CCHP RTU
 - Reheat based dehumidification
 - Make-up air handling units or Standard
- Benefits
 - Energy savings / Small Store Applications / Retrofit able / Scaleable

RADIANT FLOOR HEATING

- Radiant floor heating coils in checkout and frozen grocery sections in the stores.
- Benefits
 - Energy savings due to fuel cell low grade heat usage.
 - Aisles near refrigeration cases will require heating all year around.

REFRIGERATION INTEGRATION Energy Productivity, Security, Responsibility

CT Value Proposition

Energy Productivity, Security, Responsibility

All assumptions and results contained herein are non-binding to UTC Power. Actual performance, economic return and environmental benefits are subject to change based on, among other variables, equipment performance, economic variables, actual operating and environmental conditions, capacity utilization and maintenance. This Savings and Payback pro-forma is for customer informational purposes only and does not constitute an equipment, installation or maintenance quotation or a commitment, representation or warranty that the forecasted savings or performance will be achieved. All commitments, representations and warranties with respect to UTC Power's equipment and services shall be solely as stated in the final contract for such equipment or services.

CT Value Proposition

Energy Productivity, Security, Responsibility

Avoided Emissions

Cooling Utilization:

Grid Region:

Heating Fuel:

Customer:	North Branford, CT
Location:	СТ
System:	PureCell Model 400
Heat I Itilization:	20%

Date: 5/13/2008

Annual Emissions	<i>Energy</i> Grid	Balance	Em	issions Balan	се
Balance Sheet	Electricity (kWh)	Fuel (MMBTU)	CO2 (m	NOx etric tons - M	SOx T)
Facility	(2,796,894)	(5,775)	(2,038)	(3.99)	(6.92)
On-Site Power System	0	25,222	1,335	0.04	0.00
BALANCE	(2,796,894)	19,447	(704)	(3.94)	(6.92)

30%

U.S.

Natural Gas

Emissions Summany	E	nissions Reduction	
Linissions Summary	МТ	Equivalence	%
CO2	704	162 acres of trees	35%
NOx	3.94	226 cars	99%
SOX	6.92		100%

CO2 Emission
Rate (kg/MWh)
297

project specific w/ heat recovery

Energy Responsibility Energy Productivity, Security, Responsibility Typical avoided CO₂ emissions

Energy Responsibility Energy Productivity, Security, Responsibility Greenhouse Gas Reduction

Carbon dioxide emissions (lbm/MWeh)

Source: US DOE EIA (Electricity Generation & Environmental Externalities, 2002) *Note: Assumes full utilization of heat with cooling

Energy Responsibility Energy Productivity, Security, Responsibility Air Pollutants (NOx,SO₂, Ibm/MWh)

Central Power Plant vs. On-Site Power Emissions

Energy Responsibility Energy Productivity, Security, Responsibility Clean, efficient power generation

- Energy Productivity
 - Up to 90% Usage
 - Resource Efficiency
- Energy Security
 - Secure Power
 - Confidence
- Energy Responsibility
 - Environmental Footprint
 - Pure

TRUE GREEN TECHNOLOGIES

Willis L McCullough UTC POWER willis.mccullough@utcpower.com

FUEL CELLS/MICRO TURBINES/GEO THERMAL POWER

QUESTIONS? Thank You